Skip to main content

Články, ktoré boli napísané pred viac ako dvoma rokmi.

Prečo rastliny nie sú čierne?

Kategórie:

Slnečné žiarenie je primárnym zdrojom energie pozemského života. Z fyzikálneho pohľadu je energia širokospektrálneho (teda aj slnečného) žiarenia pohlcovaná tým efektívnejšie, čím širšie rozmedzie vlnových dĺžok fotónov (počnúc časťou spektra, v ktorej zdroj vyžaruje maximum energie) a čím väčšie percento fotónov každej z týchto vlnových dĺžok je zachytávané. Každý nevyužitý fotón by totiž spôsoboval čiastočnú stratu dostupnej energie. Rovnomerné pohlcovanie fotónov všetkých vlnových dĺžok v rozmedzí spektra viditeľného žiarenia (keďže práve v tejto časti elektromagnetického spektra Slnko vďaka svojej povrchovej teplote vyžaruje maximum energie) je ľudským mozgom interpretované ako čierna farba - preto sú čierne napr. aj solárne články. Aplikácia v biológii nám generuje priamočiary záver - ak by mali pozemské rastliny využívať energiu slnečného žiarenia s maximálnou možnou efektivitou jej premeny na chemickú energiu (ktorá je hybnou silou živých organizmov na Zemi), tak z fyzikálno-chemického hľadiska by mali jednoznačne rovnomerne pohlcovať čo najviac fotónov spadajúcich do viditeľnej časti spektra, a to i bez ohľadu na ďalšie procesy nasledujúce po zachytení fotónu. Bezprostredne sa nám tak vynára neobvyklá no logická otázka týkajúca sa jednej zo základných charakteristík pozemskej prírody okolo nás - prečo rastliny nie sú čierne?

 
0
Your rating: None

Vnútorná štruktúra čiernej diery - matematika udivuje

Kategórie:

imageProblematika čiernych dier je už niekoľko desaťročí jednou z najpopulárnejších oblastí modernej astrofyziky, v očiach verejnosti vnímaná ako príťažlivá a exotická téma. Človek by si mohol myslieť, že tieto objekty, z vnútra ktorých sa k nám nemôžu dostať žiadne častice, zostanú tajomné a neprebádateľné, a teda písať o nich ďalšie články bude viac populistické či edukačné ako užitočné. Skutočnosť je však odlišná. Ľudská myseľ má vďaka obdivuhodnému nástroju - matematike - možnosť preniknúť aj do hlbín čiernych dier. Seriózne vedecké práce sa naďalej výpočtom ich vlastností venujú a v poslednom období dospeli k prekvapujúcemu poznaniu - vo vnútri čiernych dier by sa mohli nachádzať stabilné makroskopické objekty, a to dokonca aj planéty. Zdá sa vám to absurdné? Pozrime sa teda spolu na najnovšie výsledky vedeckého výskumu v tejto oblasti.

 
0
Your rating: None

Ekologická jadrová energia - bezneutrónová fúzia (časť II.)

Kategórie:

Prvá časť tohto článku bola venovaná popisu ekologicky atraktívneho spôsobu veľkokapacitnej produkcie energie - bezneutrónovej fúzii. Boli v nej popísané jej environmentálne výhody, potenciál a riziká v kontexte hlavných konceptov štiepnych a fúznych reaktorov. V druhej časti sa teraz pozrieme bližšie na štyri vedecky seriózne podložené a experimentálne sľubne sa vyvíjajúce prístupy, ktoré by mohli ľudstvu využitie bezneutrónovej fúzie umožniť - konkrétne koncept Polywell využívajúci netermalizovanú plazmu, Dense Plasma Focus uskutočňujúci termalizované i netermalizované procesy, a prístupy Laser Fast Ignition a Z-pinch využívajúce plazmu blízku termalizácii.   

 
5
Your rating: None Average: 5 (38 votes)

Ekologická jadrová energia - bezneutrónová fúzia (časť I.)

Kategórie:

Jadrová fúzia je spolu s orbitálnymi slnečnými elektrárňami jednou z najperspektívnejších možností výrazného posunu ľudskej civilizácie na energetickej škále a prevencie jej degenerácie prejavujúcej sa i čoraz frekventovanejšími energiou motivovanými konfliktmi. Primárnou asociáciou pojmu "jadrová energia" je však opodstatnený a závažný problém rádioaktívneho odpadu. Napriek tomu, že vlajková loď výskumu a vývoja v jadrovej oblasti - projekt ITER založený na tzv. tokamakovom type fúzneho reaktora - bude v prípade úspešného dokončenia produkovať v porovnaní s dnešnými štiepnymi reaktormi mnohonásobne menej nebezpečný odpad, problém s odpadom nevyrieši úplne. Málo známou skutočnosťou však je, že existujú aj ďalšie, radikálne odlišné koncepty jadrovej fúzie, ktoré majú oproti tokamakom niekoľko predností, a ktoré zaznamenali v priebehu posledných rokov značný pokrok. Tieto koncepty majú na základe aktuálnych experimentálnych výsledkov na rozdiel od tokamakov potenciál umožniť využívať na produkciu energie aj tzv. bezneutrónovú fúziu. V prípade potvrdenia ich realizovateľnosti to bude znamenať zníženie množstva rádioaktívneho odpadu na extrémne nízku úroveň, navyše s výrazne menšími, jednoduchšími a menej nákladnými reaktormi. V tomto dvojdielnom článku sa budeme venovať viacerým najsľubnejšie sa vyvíjajúcim vedecky seriózne podloženým projektom, ktoré by ľudstvu takýto signifikantný pokrok mohli umožniť, doplňujúc celistvosť informácií popisom environmentálnych predností bezneutrónovej fúzie. Podotýkame, že bezneutrónová fúzia nie je (na rozdiel napr. od studenej fúzie) kontroverznou témou, pretože jej existencia je spoľahlivo experimentálne preukázaná a teoreticky konzistentne popísaná. Predmetom výskumu je iba možnosť jej využiteľnosti pre účely ekonomicky rentabilnej produkcie energie.

5
Your rating: None Average: 5 (29 votes)